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Abstract: We present a semi-automatic 3D segmentation method for brain 
structures from Magnetic Resonance Imaging (MRI). There are three main 
contributions. First, our method combines boundary-based and region-based 
approaches but differs from previous hybrid methods in that we perform them 
in two separate phases. This allows for more efficient segmentation. Second, a 
probability map is generated and used throughout the segmentation to account 
for the brain structures with low-intensity contrast to the background. Third, we 
develop a set of tools for manual adjustment after the segmentation. This is 
particularly important in clinical research because the reliability of the results 
can be ensured. The experimental results and validations on different data sets 
are shown. 
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1 Introduction 

In recent years, medical image segmentation has become a standard technique for 
visualising structures of the human brain as well as performing various types of 
volumetric and shape comparisons among these structures. Since the introduction of 
medical image segmentation, many methods have been implemented for brain structure 
segmentation from MRI. These methods can be categorised into manual, semi-automatic 
and fully automatic methods. Manual segmentation is tedious, requires much attention to 
detail, and the results are not reproducible. On the other hand, fully automatic methods 
require no user interaction and are completely reproducible for the same data, but the 
reliability of these methods is often an issue because it solely depends on the method and 
no human knowledge can be of any help. Therefore, semi-automatic methods have 
become the preferred type of medical image segmentation (Hu et al., 2008). 

Semi-automatic segmentation usually requires the user to initialise a point or region 
inside the object to be segmented. Region-based and boundary-based techniques are two 
main categories of semi-automatic segmentation. Region-based approach (Zhu et al., 
1995) assigns membership to pixels/voxels according to homogeneity statistics. Since 
there is no easier way to distinguish boundaries and interior pixels/voxels of the object, 
this method can lead to noisy boundaries and holes in the interior. Boundary-based 
technique (Staib and Duncan, 1992; Kass et al., 1987; McInerney and Terzopoulos, 1999) 
attempts to align an initial deformable boundary with the object boundary by minimising 
an energy functional, which quantifies the gradient features near the boundary. The main 
drawback of these methods is their sensitivity to the initial conditions. To avoid being 
trapped in local minima, most of these algorithms require the model to be initialised near 
the solution or supervised by high-level guidance, thus initialisation plays a crucial role in 
the results of the segmentation. Several hybrid methods combine region-based and 
boundary-based approaches to overcome the disadvantages of each approach alone. 
Ronfard (1994) used region-based information to drive the explicit deformable models in 
their techniques, while Chakraborty and Duncan (1995), Jones and Metaxas (1997a, 
1997b, 1998) and Chen and Metaxas (2005) have addressed these issues by interlacing 
region-based and boundary-based methods into a united, iterative segmentation process. 
The efficacy of these types of algorithms exceed that of region-based or boundary-based 
methods independently, but the most notable disadvantages of these methods are that 
they are limited to slice-by-slice (2D) segmentation and have relatively low efficiency 
compared with other segmentation algorithms. 

This paper presents a semi-automatic method that combines region-based and 
boundary-based approaches. It differs from previous hybrid methods in that it implements 
region-based and boundary-based approaches in two separate phases, which allows more 
efficient segmentation and effectively avoids local minimum. After a simple user 
initialisation, a region-based technique is used to generate an initial seed contour that 
roughly represents the actual boundary, and a boundary-based method is used to guide 
the subsequent contour deformation. Since the seed generated by the region-based 
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method is already close to the target boundary, the time needed for the subsequent 
boundary-based method is greatly reduced. The region-based method usually takes much 
less time than the boundary-based method, so our method is more efficient than a 
boundary-based method alone. 

For some brain structures such as the thalamus whose boundaries are not defined by 
gradient, a general boundary-based method cannot obtain the boundary accurately even 
with a good initial seed. Chan and Vese (2001) proposed a level-set method that can 
detect objects whose boundaries are not necessarily defined by gradient. Our contour 
deformation scheme is based on Chan and Vese (2001) with some modifications. 
Heckenberg et al. (2006) proposed a semi-automatic segmentation method using explicit 
active contour. A non-parametric kernel-based method was used to simultaneously 
update the interior probability distribution during the model evolution to overcome  
low-contrast boundaries. We incorporate this idea into part of our segmentation 
framework such that the user can choose to create a binary image based on Heckenberg  
et al. (2006) or proceed with the original image. 

Segmentation accuracy is crucial in clinical research. Hence, an expert is often 
needed to go through every segmentation result and make necessary adjustment. The 
most significant disadvantage of fully automatic methods is the lack of expert control 
over the segmentation, while semi-automatic methods have more flexibility by virtue of 
user intervention. We develop a user-friendly interface for user initialisation and 
visualisation. Moreover, we design a set of tools, which allows the user to make 
modifications to the results after segmentation. In this way, an expert can make the 
results more reliable and practical in clinical applications by post-segmentation 
adjustments. The paper is organised as follows. Section 2 gives an overview of our 
method and the user interface. Section 3 describes our segmentation algorithms in detail. 
Section 4 shows the experimental results, Section 5 shows the validation of the results 
and Section 6 concludes the paper. 

2 Overview 

The overall segmentation framework is shown in Figure 1. The processes in round 
rectangles are operated by the user, and those in ellipses are automatic procedures. 
Depending on the intensity feature of the brain structure to be segmented, the user can 
choose to initialise a point or a small region inside the structure. If the user initialises a 
point, the subsequent seed initialisation and the deformation are performed on the 
original image. This is usually suitable for structures with high-intensity contrast to the 
background, such as the Corpus Callosum (CC). If the user initialises a region, a binary 
image is generated using the method in Heckenberg et al. (2006) and the subsequent 
procedures are based on the binary image, which is updated during the deformation.  
This is useful for structures with similar intensity as the background such as the thalamus. 
Region-based methods are used to generate the initial seed, which is as close to the true 
boundary as possible, and boundary-based methods (level set in our case) are used to 
refine the segmentation result by deformation. The details of the seed generation and the 
deformation will be discussed in the following sections. After the deformation, manual 
adjustment can be performed before or after the mesh extraction if the segmentation 
result is not perfect. The mesh extraction step converts the implicit volume representation  
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to a triangle mesh for the ease of later analysis. A standard marching cubes algorithm 
(Lorensen and Cline, 1987) is applied here. 

Figure 2 shows the user interface of the segmentation software we have developed.  
It is designed to be simple and easy to manipulate. It displays three orthogonal views  
of a volumetric image, along with a 3D view. The tools for user initialisation and manual 
adjustment are on the right side. 

Figure 1 Flow chart of the segmentation framework 

Figure 2 User interface of the segmentation software (see online version for colours) 
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3 Methods 

In this section, we describe the details of the method. We first focus on the case when  
no binary image is generated, and then generalise our methods to the case of using the  
binary image. Finally, we describe the user interface for manual adjustment after the 
segmentation. 

3.1 Seed generation 

To improve the efficiency of the computation, the user can define a Region of Interest 
(ROI) before initialising the seed. An easy way to do this is to draw a rectangle on two of 
the orthogonal views and the two rectangles define a 3D ROI. Figure 2 shows the ROI of 
the ventricle defined on sagittal and coronal views. All the subsequent operations are 
performed within the ROI. If the ROI is not defined by the user, the entire image is the 
default ROI. 

We use a region-based method to generate an initial seed, which is close to the object 
boundary. The user is required to click a point 0x  inside the target structure on one of the 
three orthogonal views. After that, clustering is performed based on the image intensity. 
We adopt fast adaptive k-means (Darken and Moody, 1990) with a modified distance 
measure. Instead of L2 square distance, Delta-MSE dissimilarity (Xu, 2004) is used as 
the distance measure. The Delta-MSE dissimilarity between data point ix and the cluster 
centroid jc is defined as 

2 /( 1), ( )
( , ) ,

/( 1), ( )
j j

i j ij i j ij
j j

n n p i j
D x c w x c w

n n p i j
+ ≠ëî= − = ì − ≠îí
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where p(i) is the class label of .ix  The weight makes the dissimilarity bigger than L2 
square distance if ix is allocated in the cluster and smaller otherwise. Therefore, the 
reassignments of data samples into their closest clusters are driven with Delta-MSE 
dissimilarity more frequently than with L2 square distance, enabling a faster convergence 
to the global optimum. 

The cluster that contains 0x  is the most important cluster because it provides  
an initial estimate of the target shape. The number of clusters (k) is a parameter  
that the user can twist. However, in most cases, k = 3 or k = 4 can guarantee a good 
estimate of the target shape. Let Ωi. denote the voxels contained in the cluster that 0x
belongs to and Ωo denote the voxels outside the cluster. The next steps will further refine  
the seed (Ωi) by ensuring its connectedness and removing voxels from the seed, which  
are not strongly affiliated with the target structure. Voxels that are not affiliated  
with the target structure will in most cases be in or near the boundary of Ωi, denoted as 
∂ Ωi. To remove these voxels, Ωi is eroded m times with a mathematical morphology 
operation. This essentially removes ∂ Ωi from Ωi at each iteration, and then recalculates  
Ωi after each step of erosion. In some cases, essential voxels of the target structure  
are removed from Ωi, but the deformation stage (see Section 3.2) is used to overcome 
these seeding artefacts. 

As with most mathematical morphology operations, Ωi should then be dilated  
the same number of steps as it was eroded. However, we insert a connected components 
step before dilation to ensure the connectedness of Ωi. It is possible that there  
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are some other regions in the ROI that have similar intensity to the target structure but  
are not connected to it, so they are more likely to be in the same cluster with the target 
structure. These artefacts can be removed by applying the connected components 
algorithm (Ronsen and Denijver, 1984). The algorithm is implemented originating from 

0x  so that the connected component containing 0x  can be found. During the connected 
components search, only voxels in Ωi are available to be searched. Ωi is recalculated 
based on all voxels that are visited during the search, and the outside set is also 
recalculated accordingly. Finally, the set Ωi is dilated m times as it was eroded, 
recalculating Ωi and Ωo dynamically. The value of m depends on the specific structure of 
interest, which will be discussed in our experimental results. These seed creation steps 
can be done very efficiently, and allow for the development of a seed that is roughly 
equivalent to the target structure. Figure 3 shows the seed initialisation phase of a right 
lateral ventricle from start to finish. 

Figure 3 Demonstration of the seed generation phase of a right lateral ventricle. The 3D seed 
(left) is rendered explicitly for display purpose. On the 2D image slice (right),  
pixels are rendered as blue if they belong to the seed: (a) seed after K-means
clustering; (b) seed after erosion; (c) seed after connected components search;
(d) seed after dilation (see online version for colours) 

 (a) (b) 

 (c) (d) 

3.2 Level-set deformation 

The seed created in the previous section is coarse and contains various artefacts or 
imperfections due to image noise. This is the main drawback of region-based methods in 
image segmentation. Therefore, the seed needs to be deformed under a boundary-based 
mechanism to increase the accuracy of the segmentation. However, since this seed is 
already close to the target boundary, local maxima can be avoided in the following 
deformation, and the time needed for the deformation is greatly reduced compared with a 
general point or sphere seed. 

The seed Ωi is transformed into an implicit function and deformed based on a  
level-set PDE. A signed distance function φ is initialised such that φ( x ) is the signed 
Euclidean distance (negative on Ωi and positive on Ωo)  from x to the closest voxel in 
∂ Ωi. This is implemented by a fast sweeping method (Zhao, 2005). φ is initially very 
large at all voxels. The values for voxels in or adjacent to ∂ Ωi are directly computed with 
the following equation: 
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The values of the rest voxels are computed by propagating an estimation of the actual 
distance using previous computed elements. The details of the propagating algorithm can 
be found in Zhao (2005). 

φ is then deformed based on a PDE similar to those described in Chan and Vese 
(2001) Gibou and Fedkiw (2005). The PDEs in these works focus heavily on information 
other than edges to drive the level-set deformation. The idea behind the deformation is to 
introduce an artificial time variable t and to update the level-set function φ as time 
elapses. We update φ by numerically solving the following PDE: 

( ) 2 2
1 2/ / ( ) ( )i ot I Iφ α φ φ β γ γ∂ ∂ = ∇ ∇ ∇ − − − Ω + − Ω (3)

where iΩ  and oΩ  are the average intensities of the voxels in the sets Ωi and Ωo,
respectively. α, β, γ1 and γ2 are weight parameters. Specifically, α controls the curvature 
term, β is an external force to be applied to φ, γ1 and γ2 are the weights for the distance 
functions 2( )iI − Ω  and 2( )oI − Ω , respectively. The sets Ωi and Ωo are updated at each 
iteration to be consistent with their definitions, i.e., ( ) 0xφ <  for ix ∈ Ω  and ( ) 0xφ >  for 

.ox ∈ Ω
For the purpose of efficiency, we also implement a narrow band algorithm  

(Lefohn et al., 2004) so that only values of the distance field that are within a certain 
threshold are updated. That is, we only solve equation (2) near the voxels where ( ) 0xφ =
when updating the distance field. The deformation will stop when an equilibrium is 
achieved. Figure 4 shows the comparison of the results before and after deformation. 

Figure 4 Seed contours rendered before (top) and after (bottom) level-set deformation:  
(a) right lateral ventricle and (b) left lateral ventricle (see online version for colours) 

 (a) (b) 

3.3 Binary image generation 

In the case that a binary image is desired, the user can define a sphere centred at ox  with 
the radius r (the circle on the 2D view in Figure 5(a)). The initial binary image is 
generated using a non-parametric method (Heckenberg et al., 2006). Briefly, the intensity 
distribution is estimated based on Parzen-window function with Gaussian kernel. 
Suppose the volume of the initial sphere region is V, the probability of a voxel’s intensity 
value i being consistent with the interior intensity inside the seed can be derived as 
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where is a constant that specifies the width of the Gaussian kernel, y is a voxel and the 
integration is over the image domain. A threshold (usually the mean probability over the 
entire image domain) is applied to produce a binary image, where voxels with probability 
higher than the threshold have value 1 and other voxels have value 0 (Figure 5(b)).  

The following seed generation procedure is the same as in Section 3.1 except that it is 
performed on the binary image, so the seed before the deformation is generated based on 
the initial binary image in Figure 5(b). In this case, we can always let k = 2 for the  
k-means clustering because there are only two intensity levels in the binary image. 
During the deformation, the binary image is updated at each iteration based on the most 
recent distance field (Figure 5(c)). This method is especially suitable for brain structures 
with low contrast to the background. The difference between our method and the method 
in Heckenberg et al. (2006) is that we apply region-based techniques on the binary image 
before the deformation, so that the seed is close to the target boundary, while in 
Heckenberg et al. (2006) a point seed is deformed from the beginning. 

Figure 5 (a) Initial seed of the thalamus defined by the user (circle on the 2D slice); (b) initial 
binary image generated from the seed in (a); (c) updated binary image during the 
deformation with the level-set model overlaid (blue region) (see online version
for colours) 

 (a) (b) (c) 

3.4 Manual adjustment 

In some extreme cases, the above-mentioned level-set model cannot achieve a  
perfect segmentation, and manual adjustment is necessary to ensure the segmentation 
correctness. We design several convenient tools for manual adjustment after the 
automatic segmentation. 

In the case that part of the brain structure is missing in the segmentation result  
(Figure 6(a)), the user can delineate the boundary of the missing part by sequential  
point clicking. The user-delineated boundary and the partial boundary of the original 
segmentation result form a closed region, and the voxels inside this region are moved to 
set Ωi from set Ωo. This is done by setting ( ) 0xφ <  for these voxels (Figure 6(b)). 

If the result includes voxels outside of the structure of interest, two options  
can be performed. The user can draw a cutting line on a 2D slice (Figure 6(c)) and 
specify which side of the line is to be cut off. The voxels on this side of the line  
are moved to set Ωo if they were in set Ωi before (Figure 6(d)). The other option is to 
draw a rectangle that encloses the voxels that need to be cut off from the segmentation 
result (Figure 6(e) and (f)). 



      

      

      

   166 Q. He et al.    

      

      

      

      

Figure 6 Demonstration of manual operations on the segmentation of the corpus callosum:
(a) the splenium bottom is missing (the circle is used to highlight the missing part);
(b) the result after manual modification on (a); (c) the segmentation result extends the 
anterior boundary and the user-specified cut line; (d) the result after cutting off the 
region on right side of the line in (c); (e) the fornix enclosed in the small rectangle  
is to be cut off and (f) the result after cutting off the fornix in (e) (see online version
for colours) 

 (a) (b) (c) 

 (d) (e) (f)

All the manual operations have to be performed on a slice-by-slice basis, which might be 
time-consuming. However, the purpose of manual adjustment is to ensure the correctness 
of the segmentation result, and it is easier to make judgements on each 2D slice instead of 
a 3D model. Moreover, manual operation is not the main part of our segmentation 
framework and there is limited amount of operation needed, so the time spent on manual 
adjustment is not a big issue. The experimental results will show the frequency of the 
data and the slices that need manual adjustment. 

4 Results 

The segmentation algorithm is implemented in C++ and the user interface is  
developed using FLTK (http://www.fltk.org/). We test our method on two data sets.  
The first data set consists of brain MRI scans of 20 college student volunteers  
obtained on a 3T Siemens Trio scanner with a standard 8-channel head coil in the 
Department of Psychological Sciences at the University of Missouri (TR = 1920 ms, 
TE = 3.75 ms, flip angle = 8°, in-plane resolution = 1 × 1 mm, slice thickness = 1 mm, 
number of images = 160, matrix = 256 × 256). The second data set consists of 25 children 
with autism recruited from the Thompson Center for Autism and Neurodevelopmental 
Disorders. T1-weighted brain MR images were acquired using the Siemens  
Symphony 1.5 T scanner (TR = 35 ms, flip-angle = 30 degrees, thickness = 1.5 mm, 
matrix = 512 × 512). 

Three structures are segmented using our method: the CC, the lateral ventricles and 
the thalami. Figure 7 shows the segmentation results (after manual adjustment if 
necessary) in 2D and 3D views of 3 randomly selected subjects from each data set.  
For each structure, one orthogonal view that best displays the features of this structure is 
shown, i.e., sagittal view for the CC, coronal view for the ventricles and axial view for 
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the thalami. The segmentation result is overlaid on the corresponding orthogonal view.  
A 3D view of all segmented structures is also shown. For the CC and the ventricles,  
we choose point initialisation described in Section 3.1, and for the thalami we choose 
region initialisation described in Section 3.3. The deformation parameters are set in the 
following range: α = 0.02~0.06, β = 0.02~0.05, γ1 = γ2 = 0.1, time-step = 0.2. The seed 
generation parameters depend on the intensity distribution of the segmented structure and 
the background. We find that the best parameter values for the CC are: k = 3, m = 1,
for the ventricles: k = 3, m = 0, and for the thalami: r = 1.9~2.2, k = 2, m = 1. 

Figure 7 Segmentation results of student volunteers (a)–(c) and autistic children (d)–(f). Top left: 
sagittal view of the segmentation result of the CC (blue region); top right: axial view of 
the segmentation result of the thalamus; bottom left: coronal view of the segmentation 
result of the ventricle; bottom right: 3D view of the segmented structures (see online 
version for colours) 

(a)

(b)
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Figure 7 Segmentation results of student volunteers (a)–(c) and autistic children (d)–(f). Top left: 
sagittal view of the segmentation result of the CC (blue region); top right: axial view of 
the segmentation result of the thalamus; bottom left: coronal view of the segmentation 
result of the ventricle; bottom right: 3D view of the segmented structures (see online 
version for colours) (continued) 

(c)

(d)
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Figure 7 Segmentation results of student volunteers (a)–(c) and autistic children (d)–(f).
Top left: sagittal view of the segmentation result of the CC (blue region); top right: 
axial view of the segmentation result of the thalamus; bottom left: coronal view  
of the segmentation result of the ventricle; bottom right: 3D view of the segmented 
structures (see online version for colours) (continued) 

(e)

(f)
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With the facility of manual adjustment, our segmentation software can achieve both 
efficiency and optimal reliability, which is desired in clinical applications. Manual 
adjustment is made by a knowledgeable expert using our manual tools in Section 3.4 if 
necessary. From our 45 data sets, no manual adjustment is needed for the ventricle 
segmentation, 10 data sets need manual adjustment for the CC segmentation and 12 need 
manual adjustment for the thalamus segmentation. The slices that need to be modified 
usually appear at the end of the structure in its dominant view (e.g., sagittal view for the 
CC). Among the data that need manual adjustment, the average number of slices adjusted 
is 6 for the CC and 4 for the thalamus. 

5 Validation 

To test the accuracy and efficiency of the segmentations, we compare our method with a 
generic boundary-based method (which uses a sphere seed centred at the user-specified 
point). The only difference between these two methods is the way that the seed is created. 
The segmentation results of the two methods are both compared with manual (ground 
truth) segmentations. The manual segmentation is performed by a trained expert different 
from the one who does the manual adjustment. For the comparisons, we calculate Dice 
similarity and overlap coefficients between manual segmentations and the results of each 
method. The range of these statistics lies between 0 and 1, with 1 indicating a perfect 
agreement between our segmentation and the manual segmentation. Table 1 provides a 
summary of the results. Overall, both methods are able to closely achieve the accuracy of 
the manual segmentations, but our method has higher accuracy than the generic 
boundary-based method. Manual segmentation takes 2 h for each individual structure on 
average. To segment one structure using our method, the user initialisation takes 20 s,  
the automatic algorithm part takes 90 s and the manual adjustment takes 10 min  
on average. Therefore, our segmentation framework is much more efficient than manual 
segmentation, even when the manual adjustment is needed. We also show the efficiency 
of our segmentation method by comparing the running time of the automatic 
segmentation part (after user initialisation and before manual adjustment) between the 
two methods. The results are shown in Table 2, which indicates that our method is much 
faster in the automatic part than the generic method. Given the previous comparison of 
the accuracy, it is demonstrated that our new seeding scheme increases both accuracy and 
efficiency.

Table 1 Accuracy measurements of our results and the results from the generic  
boundary-based method 

Dice Overlap 
Our method Generic method Our method Generic method 

Structure Mean Std. Mean Std. Mean Std. Mean Std. 
CC 0.79 0.05 0.76 0.05 0.79 0.03 0.75 0.03 
Left ventricle 0.81 0.04 0.78 0.05 0.73 0.05 0.72 0.05 
Right ventricle 0.78 0.06 0.75 0.06 0.81 0.03 0.78 0.03 
Left thalamus 0.69 0.08 0.64 0.09 0.66 0.06 0.63 0.07 
Right thalamus 0.70 0.07 0.67 0.09 0.65 0.05 0.64 0.07 
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Table 2 Automatic segmentation time of our method and the generic boundary-based method 
(in seconds) 

Structure Our method Generic boundary-based method 
CC 98 240 
Left ventricle 75 182 
Right ventricle 78 186 
Left thalamus 88 124 
Right thalamus 84 120 

Since our method is not fully automatic, human factors may affect the consistency  
of the segmentation results. To test the effect of human factors, we have two operators  
to perform the segmentation and manual adjustment on the same subset of the data. 
Twenty data sets are randomly selected as the subset of the data. The two operators have 
been trained enough to be able to perform manual adjustment properly. Each operator is 
blind to the seed initialisation and ROI definition of the other. The overlap of each pair of 
the segmentation results is measured by Dice coefficient. Table 3 shows the statistics of 
the Dice coefficients on different segmented structures. The high Dice similarity shows 
that our method can produce consistent results despite the user initialisation. 

Table 3 Dice coefficients of the segmentation results from two raters 

Structure Mean Std. 
CC 0.89 0.02 
Left ventricle 0.94 0.01 
Right ventricle 0.90 0.01 
Left thalamus 0.82 0.07 
Right thalamus 0.85 0.08 

6 Conclusion and future work 

We present a semiautomatic 3D segmentation framework for brain MRI, which combines 
region-based and boundary-based approaches. After user initialisation, a region-based 
technique is used to generate an initial seed contour that roughly represents the actual 
boundary, and a boundary-based method is used to guide the subsequent contour 
deformation. To deal with brain structures with low-intensity contrast to the background, 
we choose to generate a binary image iteratively based on the intensity distribution of the 
deformable model, thus facilitating the segmentation. A user-friendly interface is 
developed for user initialisation and visualisation. Moreover, a set of tools are designed 
that allows the user to make modifications to the results after segmentation. The results 
show that our method has similar accuracy to the manual segmentation but is much faster 
even with manual adjustment after the segmentation.  

Our segmentation framework is a practical tool in clinical research. Our method can 
overcome the unreliability of fully automated methods in that we allow manual 
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adjustment to the results, and it is much faster than pure manual segmentation. The user 
initialisation is also very simple for a general user.  

Currently, the segmentation software is limited to segment one structure at a time. 
However, it is straightforward to extend it to segment multiple structures at the same 
time. Although our primary interest is the segmentation of brain MRI, our segmentation 
framework can also be used for other imaging modalities and anatomical regions, such as 
lung CT images. To further put it into practice, we aim at developing a web application of 
our segmentation framework in the future. 
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